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Abstract 
 
Programmable shading is a technique that allows for flexibility 
in specifying the appearance of an object independent from its 
underlying geometry. Widely used in feature films and by the 
entertainment industry for more than a decade, programmable 
shading has not been adopted by the scientific visualization 
community due to its lack of interactivity. With the advent of 
graphics hardware that supports programmable shading, and the 
two major graphics APIs (OpenGL and DirectX) moving to 
where programmable shading will be the standard method of 
defining appearances, these technologies will allow scientific 
visualization to embrace these technologies by enabling real 
time interaction. 
 
Programmable shading can facilitate the exploration of data by 
allowing the end user to develop new methods for mapping the 
data, independent of the software used to create the geometry. 
This paper provides an overview of rendering in general, 
examples of programmable shading from entertainment, ARL 
MSRC, and other HPC sites, and shows how the recent advances 
in graphics hardware and associated Application Programming 
Interfaces (API) will enable the DoD user community to apply 
these technologies to visualization. 
 
1   Introduction 
 
Rendering is the process of converting a description of a three-
dimensional scene consisting of geometry, appearance and 
lighting, into a two-dimensional image. Rendering consists of 
several steps: hidden-surface removal, illumination, and 
shading.  
 
Hidden-surface removal (or visible-surface determination) is the 
process of determining what is currently visible from a 
viewpoint. Hidden-surface algorithms in use today are variants 
of point-sampling algorithms, where visibility is determined by 
taking sample points at a finite number of points, and then trying 
to infer the visibility of an entire surface from these limited 
points. Sutherland, et al. [Sutherland 1974], identified sorting 
order as the major distinction between different types of point-
sampling algorithms. Three of the ten algorithms that Sutherland 
identified are the most commonly used today: Z-Buffer [Catmull 
1974], Ray-Tracing [Appel 1968] [Kay1979] [Whitted 1980], 
and Scan-Line [Wylie 1967] [Watkins 1970] [Bouknight 1970a] 
[Bouknight 1970b]. The Z-Buffer algorithm forms the core of 
most hardware-accelerated graphics processors. 
 
Illumination is the process of determining the components of the 
scene that are dependent on the propagation of light through that 
scene. Illumination is divided into two major components, direct 
illumination, determining the contribution of light directly 
deposited on the surface of an object from a light source, and 
indirect illumination, where the light impinging on an object has 
arrived at the surface through one or more bounces from other 
surfaces. The process of calculating the contribution from a 

direct illumination source is a variant of the hidden-surface 
process described above. 
 
Shading is the process of determining the distribution of light 
leaving a surface given the incident light and the optical 
properties of that surface. Using the bi-directional reflectance 
distribution function (BRDF), shading computes the final color 
of the surface in the image. The BRDF or shading models 
implemented in hardware today are Gouraud [Gouraud 1971], 
Phong [Bui-Tuong 1975], and Blinn [Blinn 1977], 
 
These shading models limit the appearance of objects to at most 
a handful of appearance types, and do not begin to describe the 
wide variety of materials seen in the physical world. To 
overcome these limitations, various other techniques were 
developed including texture mapping [Catmull 1974], Bump 
Mapping [Blinn 1978], and Reflection Mapping [Blinn 1976]. 
The problem with these shading models and their extensions is 
that the appearance is directly tied to the underlying geometry. 
In order to change the appearance of the surface, it is required to 
change the description of the appearance at the definition of the 
geometry. 
 
In 1987, Cook et al. [Cook 1987] described a new rendering 
architecture called REYES. Developed at Lucasfilm, Ltd., and 
refined at Pixar, REYES was designed to handle large scene 
complexity (efficiently render scenes with more than 80 million 
polygons), scene diversity (many different types of primitives 
including polygons, Non-Uniform Rational B-Splines, and 
fractals), and shading complexity that could mimic materials 
seen in the physical world. Based on these requirements, the 
authors decided that a programmable shading model was the 
only technique that would suffice. The shading model for 
REYES was based on Shade Trees [Cook 1984] and described 
in detail by Hanrahan and Lawson [Hanrahan 1990].  

Description 
Programmable shading is a technique that allows for flexibility 
in specifying the appearance of an object independent from its 
underlying geometry. By separating shape from shading, 
programmable shading alleviates the problem of adding 
complexity to geometry in order to describe a shading problem. 
For example, whereas cloth can be described as a net of 
polygons or a parametric surface for each individual thread, 
another approach would be to describe the overall shape of the 
fabric geometrically, taking the appearance of the cloth as a 
shading problem. 
 
A programmable shader is a piece of code, usually a procedure 
that is run whenever the renderer needs the appearance of an 
object at a particular sample. Since the shader is called at point 
samples, it integrates easily with the three hidden-surface 
algorithms described earlier. 
 
Figure 1 shows an example RenderMan shader that implements 
a plastic appearance, the associated scene description, and the 
resulting image. 



surface 
plastic (float Ka = 1, Kd = 0.5,  
             Ks = 0.5, roughness = 0.1; 
             color specularcolor = 1;) 
{ 
 normal Nf = faceforward  (normalize(N),I); 
  Ci = Cs * (Ka*ambient() + Kd*diffuse(Nf)) + 

specularcolor * Ks * 
specular(Nf,normalize(I),roughness); 

  Oi = Os; 
  Ci *= Oi; 
} 

 
 

Display "purple_ball.tif" "file" "rgb" 
Format 256 256 1 
Projection "perspective"  "fov" 30 
Translate 0 0 5 
WorldBegin 
TransformBegin 
Translate 0 4 -4 
LightSource "pointlight" 1 "intensity" 70 
TransformEnd 
Color  [ 1 .6 1 ] 
Surface "plastic" "Ks" 1 
Sphere 0.5 -0.5 0.5 360 
WorldEnd 

Figure 1. RenderMan "plastic" shader, a simple scene, and the associated image. 
 
 
2   Programmable Shading in Entertainment 
 
The entertainment industry has relied heavily on programmable 
shading from the initial development of the technique. First 
utilized by the feature film industry, programmable shading is 
now showing up in consumer games and in gaming consoles 
such as the PlayStation2 and the XBox.  
 
The earliest use of programmable shading was in a little known 
1984 short, The Adventures of Andre and Wally B., an animation 
created to test the capabilities of the REYES architecture. But 
the success of the 1986 Academy Award nominated short, Luxo, 
Jr., and the 1989 feature file, The Abyss, showed the 
entertainment industry what programmable shading could 
achieve, and led the revolution of the inclusion of Computer 
Generated Imagery (CGI) into nearly every feature film 
produced since. 
 
Since HPC is a different industry with different requirements 
from the entertainment industry, the question needs to be asked: 
Why should HPC care about Hollywood? 
 
The first reason is with the advent of the all computer-generated 
movie, the film industry has had to deal with HPC-sized data 
management issues. The first Pixar/Disney movie, Toy Story 
(1995), required 1 Terabyte of data to describe the entire film, 
and 0.5 Terabytes to store the final generated imagery. For the 
film, Shrek (2001), the PDI/Dreamworks render farm consisted 
of 1482 processors with 6.5 Terabytes of storage. The entire film 
required around 200 Terabytes of storage for the description of 
the geometry, textures, and shaders used for each frame of the 
film. 
 
The second reason is in the visual complexity of the scenes 
generated for modern film. Statistics from the movie Shrek 
indicate that each frame of the film contains from 200 million to 
over 1.2 billion polygons [Flarg 2001]. Additionally, each frame 
averages two gigabytes of input to render the image. 
 
Is there any reason why HPC shouldn't adapt to all of the 
techniques the entertainment industry uses to make feature 
films? The main reason is that the goals of HPC and the 
entertainment industry are fundamentally different. For HPC, 
the parts of the physical world we are trying to model and 
visualize must stay as true to the object or principle that we are 
modeling to preserve reality. For the entertainment industry, the 
goal is to create a verisimilitude of the object or process that is 
to be depicted, using only as much of reality as necessary to 

create the effect. For example, in the movie, The Perfect Storm, 
Industrial Light and Magic used models of ocean wave 
development and the optical properties of water as the principal 
components of their wave simulations, but had artists paint 
additional foam and spray elements to meet the look requested 
by the director. However, these differences are independent of 
the choice to use programmable shading, and its flexibility gives 
the user control over the depiction of reality. 
 
 
3   Programmable Shading for High 

Performance Computing 
 
Since programmable shading has been shown to handle scenes 
of high complexity and large data sets, how can we apply the 
techniques developed by the entertainment industry over the last 
decade to visualization and to DoD researchers supported by the 
HPC program? After understanding the mechanisms of 
programmable shading, it is a relatively simple process to add 
these features into an already existing visualization pipeline. The 
following set of examples will demonstrate the capabilities of 
using programmable shading with visualization. 
 
The simplest use of programmable shading is to change the 
appearance from the standard Gouraud shading available in 
visualization software to a shader that will provide normal 
interpolation for curvature information (see Figure 2). By this 
simple transformation, DoD researchers have been able to 
acquire a better understanding of the shape of the surface, 
without obscuring the underlying visualization. 
 

 
Figure 2. Gouraud (left) vs. Metal (right) shading. 
 
For the Computational Fluid Dynamics simulation of the 
transport of species through a city block, a shader was designed 
that would create the illusion of volume rendering from a set of 
stacked iso-surfaces (Figure 3). For this image, iso-surfaces 
were extracted from the time varying, 4.5 million unstructured 
cell data as a pre-processing step, a later version of the shader 



extracted the iso-surfaces from the data directly, thereby 
reducing both the disk and memory requirement of the renderer. 
 

 
 
Figure 3. Species transport around a city block. "Gold Foil" 

(left) and "Whispy" (right) shaders. 
 
Shown below (Figure 4) is a single frame from a 61,000-frame 
hologram of the Brilliant Anti-Armor Technology device.  
 

 
 
Figure 4. One frame from a hologram of the Brilliant Anti-

Armor Technology device. 
 
To prevent visual “tearing” of the image (caused when geometry 
is partially clipped by the edge of the image), a shader was 
created that would fade geometry, in this case, the streamlines 
extracted from the CFD simulation that was computed on the 
ARL MSRC resources, to transparent across a user-specified 
distance. Additionally, a shader that gave strong specular 
highlights was used to provide shape information, especially in 
the transparent sub-munitions. 
 
3.1 Texture Synthesis 
 
Another use for programmable shading is in synthesizing 
textures to convey additional information, such as, the curvature 
of a surface or multiple attributes. Figure 5 shows several 
examples of how generating textures can provide additional 
information on the shape of a transparent surface. 
 

 
 
Figure 5. Examples of texture synthesis [Interrante 1997]. 

 
3.1.1 Textures for Surface Interpolation 
 
Rheingans [Rheingans 1996] performed a study examining how 
using modulated textures instead of transparency helped 
computational chemists identify features on the solvent 
accessible surface of a molecule. This study showed that the 
chemists had better recognition of the surface shape, and a 
clearer understanding of the underlying model. While custom 
software was developed to create the textures, the technique 
could easily be implemented in a programmable shader (see 
Figure 6). 
 

 
 
Figure 6. Comparison of transparency vs. texturing for surface 

curvature. 
 
By encoding the curvature along principal directions as textured 
strokes and coloring by the magnitude of the gradient, Interrante 
[Interrante 1997] found that more information was conveyed to 
a viewer than by plain transparency alone (see Figure 7). 
 

 
 
Figure 7. Texture synthesis showing components of principal 

directions, colored by the gradient of the curvature 
[Interrante 1997]. 

 
3.1.2 Textures for Encoding Data 
 
Cabral and Leedom [Cabral 1993] developed a technique using 
Line Integral Convolution to create texture maps of two-
dimensional vector fields. The fundamental concept is to render 
a scalar pixel value for each vector in a vector field. The pixel 
encodes the local vector field by convolving a set of input image 
pixels that lie under a local streamline. The resulting image or 
texture is similar to the input image, except it is blurred in the 
direction of the vector field. If the input image is uncorrelated 
white noise, streaks resembling fine hairs lie along streamlines 
in the vector field (See Figure 8). 



 

 
 
Figure 8. Line Integral Convolution of the surface vector field 

on the shuttle. 
 
3.2 Volume Rendering 
 
Unlike the techniques mentioned in previous sections, volume 
rendering is not a segmentation technique, i.e., it operates on the 
entire volume of data. Programmable shading languages usually 
do not have the capabilities or feature sets necessary to do 
volume rendering. However, there are two different methods 
that one can use to create volume rendered images inside a 
renderer supporting programmable shading. 
 
3.2.1 Texture Mapping 
 
The first technique for creating volume rendered images is to 
generate a series of tiled, gray-scale, texture maps that represent 
the data, and a separate texture map for the color and opacity 
transfer functions. Figure 9 shows an example set of input 
textures, and the resulting image for a continuous, spherical, 
density function. To render this dataset, a scene is created with a 
box at the extents of the original data, and a volume texturing 
shader is applied to each of the six faces. 
 

 
 
Figure 9. Texture Mapping for Volume Rendering. The images 
in the upper left are slices through the data set from front to 
back. The image in the lower left is the transfer map for color 
(top) and opacity (bottom) where black is transparent and white 
is fully opaque. The right image is the result. 
 
The advantage of this technique is that you can embed geometry 
in the region covered by the volume, for example, the buildings 
in Figure 3, and have it rendered correctly. No other volume 
rendering technique is capable of mixing geometry types in this 
manner. The disadvantage of this technique is that your 
rendering is only as good as the number of image slices from the 
original data in the texture map. 
 
Dave Bock at NCSA [Bock 1998] used this technique to create 
several animations of volumetric data. Figure 10 is one frame 
from the computation of the collision of binary neutron stars. 

 

 
 
Figure 10. Volume rendering of the collision of binary neutron 

stars [Bock 1998]. 
 
3.2.2 Ray Casting 
 
The second method is an application of a traditional ray-casting 
volume renderer built into a shader. This technique involves the 
same scene as in the previous example, but the name of the 
dataset is passed to the shader as opposed to an image. The 
shader, shown in Figure 11, generates a ray from the eye 
through the intersection point on the box. That ray, along with 
other information, is passed to an external C routine that 
computes the color and opacity along the ray. The shader then 
composites that color into the color returned from all other 
geometric objects in the scene. The external C routine used for 
Figure 11 was implemented in OpenDX, but could have been 
implemented in the Visualization Toolkit (VTK) as well. 
 

 
 
 
Figure 11. Direct volume rendering and the associated shader. 
 
This technique cannot be implemented in the programmable 
graphics hardware available today. Purcell et al. [Purcell 2002] 
have hypothesized that with the expected modifications to 
existing hardware, ray casting will become a viable technique 
within the next year. 
 
4   Programmable Graphics Hardware 
 
Kurt Akeley [Akeley 2001] created a classification of "GL"-like 
machines based on the capabilities of graphics hardware (see 
Table 1). 



 
 ERA CAPABILITY EXAMPLE 
1 Pre-1987 Wireframe 

 
 

2 1987-1992 Shaded 

 
3 1992-2000 Texture Mapping 

 
4 2001- Programmability 

- Programmable 
 Shading 

 
NVIDIA 

5 ??? Global Evaluation 
- Ray Tracing 
- True Shadows 
- Global Lighting

Henrik Wann Jensen 
 
Table 1. Generational capabilities of GL-like hardware, after 
[Akeley 2001]. 
 
Peercy et al. [Peercy 2000] demonstrated that many of the 
capabilities of the RenderMan Shading language [Pixar 2000] 
(the de facto standard for programmable shading) could be 
implemented in 3rd generation hardware that supports multi-
texturing extensions. 
 
True 4th generation hardware is currently available in modern 
graphics chips, such as the NVIDIA GeForce4 [NVIDIA 2002] 
and the ATI Radeon 8500 [ATI 2001]. These chips replace the 
static functions for vertex and texture (fragment) operations with 
programmable ones. Since programmable hardware is in its 
infancy, there are many limitations, such as: 
 

• Vertex and fragment programs have limited 
instructions. 

• Programs cannot loop or conditionally branch. 
• Each implementation has different instructions, 

capabilities, and evaluation sequences. 
• Many resource limitations exist: 

o Limited number of instructions; 
o Limited number of registers; 
o Limited inputs and outputs; 
o Limited number of textures; 
o Limited to 8-bits of fixed-point precision in 

fragment operations. 
 
Programmable shading implementations [Stanford 2000] [SGI 
2000] for 3rd generation hardware have none of the resource 
limitations described above, but suffer from other drawbacks: 
 

• No true displacement of geometry 
• Speed 

o The Stanford system compiles shaders on 
the fly before passing to the hardware. 

o Both systems require multiple passes 
through the graphics hardware to evaluate 
the shader. 

 
In order to provide uniform access to programmable graphics 
hardware, several Application Programming Interfaces (APIs) 
have been created or proposed. These APIs target capabilities 
beyond what is currently available in today’s hardware, but what 
will be implemented in future graphics chips. 
 
5   APIs for Programmable Graphics Hardware 
 
There are currently three publicly available APIs that define 
interfaces for programmable shading. The first and original 
specification is the RenderMan Shading Language. While 
somewhat outdated, and missing features available in modern 
programming languages (e.g., shaders tend to be monolithic 
since shaders may not call other shaders), the RenderMan 
Shading Language is still the most complete shading language 
currently in use. There are several software implementations of 
the RenderMan Standard [DOTC 2001], and there have been at 
least two attempts to build hardware implementations of the 
RenderMan standard, namely, the Pixar Vision Computer and 
the RenderDrive [ART 2002]. There have been reports of 
software to translate RenderMan shading language into OpenGL 
[Peercy 2000], but the software has not been made publicly 
available. All of the images created in Section 3 were made with 
a RenderMan-compliant software renderer. 
 
The second API is the DirectX/Direct3D suite from Microsoft 
[DirectX 2001]. The DirectX API is capable of a wide range of 
programmable effects. Its development emphasis is directed at 
the games market, but much of the feature set could be 
leveraged for HPC applications. There are several features of the 
API that make it unsuitable for HPC type applications: 
 

• Shaders are written in a pseudo-assembly language 
with little to no support for a high-level language API. 
However, shaders can be accessed from any high-level 
language. 

• DirectX is a single platform API, limited to the 
Windows operating system. 

 
The final API that will be discussed is the OpenGL 2.0 proposal, 
currently in development. The first efforts to define OpenGL 
began in 1990 and resulted in a specification in 1992. Over the 
last decade, the specification has changed very little while there 
has been a dramatic change in the capabilities of graphics 



hardware. The OpenGL 2.0 proposal was motivated by the fact 
that [OpenGL2 2002]: 
 

“… graphics hardware is changing rapidly from the 
model of a fixed function state machine (as originally 
targeted by OpenGL) to that of a highly flexible and 
programmable machine.”  
 

With this motivation in mind, the proposal then defines the 
following goals: 
 

• Bring OpenGL to a level that reflects the capabilities 
and performance of current and near-future graphics 
hardware. 

• Provide a vision for the development of future 
generations of programmable graphics hardware. 

• Reduce the need for existing and future extensions to 
OpenGL by replacing complexity with 
programmability. 

 
The OpenGL 2.0 specification is currently being developed with 
broad support from industry and OEMs. The scheduled first 
draft of the specification is scheduled for June 2002, with the 
first public review draft at SIGGRAPH 2002 in July. Initial 
implementations of OpenGL 2.0 should occur around December 
2002, and full implementations by July 2003. 
 
6   Conclusion 
 
It has been shown that programmable shading is a viable 
technique for scientific visualization. Programmable shading 
will allow for the creation of new techniques for the examination 
of data, and provide alternative ways of implementing older 
techniques. With the advent of hardware accelerated 
programmable shading, and the APIs necessary to support it, 
this technique will not only become a standard part of scientific 
visualization, but will change how visualization is done. 
 
At the ARL MSRC, we are beginning to apply these techniques 
to the data generated by DoD researchers. It is expected that 
these techniques and shaders will be provided to the DoD user 
community over the next several years. 
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